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Local-field potential (LFP)

» The local field potential (LFP) refers to the
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« Several methods are available to estimate
LFP from model simulations (Reimann et i
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Oscillations

 Population activity can show a certain
degree of synchrony and the LFP shows
oscillations.

« The figure shows a 16-site silicon probe in
the CA1-dentate gyrus axis.

 Gamma oscillations (30-80 Hz) are nested

in theta oscillations (4-10 Hz).

E P F L Buzsaki, 2002



Oscillations

LFP is a time series (time domain)

The LFP can be decomposed into a series
of sine and cosine of different frequencies
thanks to Fourier transform.

A way to represent how different
frequencies contribute to the signal (i.e.,
LFP) is the power spectrum (frequency
domain).

Different frequencies are called in different

ways.
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Theta rhythm
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« Theta oscillations (4-10 Hz) has been

correlated with many brain functions.

* In particular, theta seems to be associated

-

with memory.

Leaming
Extinction
Orienting
Temperature change
AUONOMic-somatic
Otaction Memory
Raversal leaming Responge persistance
Motivation Habituahon
Information processng  Conditioning
Decision making Avoidanoe
Visual search Senserimolor
Neurosis Delense

Arousal Frustration Bar pressing

q Anxiety Activation Warkong memory

Attention Aggression Readiness Plasticity

Volition Holography Swimming Encoding

Comparator  Cholinergic response  Play Retrieval
Arcusal  Arousal  Mismatch Sexual bahavior Hypnosis Mapping Navigation

1930 40 50 60 70 80 90 2000

E P F L Buzsaki, 2005




Theta initiation and maintenance

« The generation of theta oscillations in

the CA1 is due to MS pacemaker cells. ‘\\
\/ (/
« Atype of theta oscillations is blocked by W A i
atropine suggesting a role of O ~_, A

Acetylcholine (ACh).

» Depolarizing inputs may come from
different sources: CA3, EC, MS, Sub

f
i

(Sun et al., 2014), sub cortical regions ./
i 36(10}' pah EC
(Vertes et al., 2004) 2R : layer 3
/N sink

E P F L Buzsaki, 2002
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MS pacemaker cells

« MS pacemaker cells are

GABAergic neurons which express
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MS cholinergic neurons

* MS cholinergic neurons fire with a

low rate.

« They are neuromodulator neurons

that release ACh in CAT1.

 Neuromodulators as ACh have
wider (in space and time) effects

on the networks.
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Acetyicholine

« Several types of transmission

« Effect on cells and synapses

depending on receptors “Synaptic”

* Nicotinic receptors (nAChR) are

ionotropic and normally excitatory

* Muscarinic receptors (MAChR) are

metabotropic. In general, M1 and
M3 are excitatory, M2 and M4 and

Dendrite

Disney and Higley, 2020

inhibitory.
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Summary 1.1

* Theta oscillations are generated by MS GABAergic neurons.

« MS cholinergic neurons seems to be also implicated at least in some forms
of theta.

« Background excitation from different source could be also needed.
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CA1model

10. Simulations

Different types of stimuli
Bath manipulations
Local field potential

11. Validations

Extensive validation
of the model at
different scales

12. Predictions
DDD I Role of acetylcholine

Generatlon of theta

Oscillation transmission

9. Acetylcholine

Multiscale
phenomenological model of ACh

8. Projections

267K presynaptic cells (CA3 PC)
3 synaptic classes
9,122M extrinsic synapses

7. Network
456K neurons

6. Synaptome

22 intrinsic synaptic classes
821M intrinsic synapses

5. Connectome

157M intrinsic connections

4. Neuron models

4 electrical types
25K unique single cell models

# 1. lon channels
Wiy

12 ion channel models
2. Receptors
H H AMPAR, NMDAR, GABAR

3. Morphologies

12 morphological types
2,523 unique morphologies
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MS pacemaker cells

* GABAergic MS neurons target principally INT than PC in CA1 (Sun et al.,
2014)

« MS INTs predominately target PV+ INT in CA1 (Mdller and Remy, 2018;
Sun et al., 2014)

« PV+ INT seems to play a major role compared to SOM+ INT (Amilhon et al.,
2015)

* For simplicity, we can assume that they target only PV+ INT

=PrL .



MS pacemaker cells

« ltis not clear how many MS cells are activate at the same time,

* how many cells converge on the same PV+INT,

* how strong are the IPSPs.

« We cannot model the MS INT innervation precisely, and we have to use a
more phenomenological model.

« We can inject a hyperpolarizing current into the PV+INT somas.
« The size of this current is unknown and it will be a free parameter in the

model.

=PrL ;



MS pacemaker cells

» In particular, we have to define mean value, amplitude and frequency
(mean, A, f) of the hyperpolarizing current to be injected in PV+INT.

« We can set mean = -A to reduce the parameter space. This is equivalent to

say that the pacemaker cells are silent only around the peaks.

f

A
v

mean
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« The CA1 network is almost silent without an excitatory input.

« Background excitation is necessary to make the cells reach the spike
threshold.

* Itis not clear what is the source and intensity of this current.

« We use a phenomenological model and inject a depolarizing current into the
cells.

» For the sake of simplicity, we treat all the cells in the same manner

« The size of this current is unknown and it will be a free parameter in the

model.

=PrL
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Acetyicholine

« The sparse available data suggest that ACh increases the neuron excitability (=
depolarize the neurons) and reduces the PSPs.

« The data is not sufficient to discriminate between cell types and different pathways.

» For neuron excitability, we can compute an equivalent net current due to ACh (in vitro
bath application) and fit a dose-effect curve.

« For PSP, we assume that the ACh acts mainly at the level of synaptic probability (i.e.,
term U of the Tsodyks-Markram model) and fit a dose-effect curve.

« The amount of ACh released during theta oscillations is unknown and it will be a free

parameter in the model.

=PrL
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Acetyicholine
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In summary...

* All the neurons receive a depolarizing
current dep.
» dep needs to be from 100% (threshold) to

~130%. Afterwards, we observe non- MSOFF  MSON  MS OFF
PV+

physiological behaviors of the cells.

PC, PV- dep

onlcl epoaria |onl N ]T B
* PV+INT receive a hyperpolarizing current of ‘L// A\ f
4@4
ACh MS

amplitude A and frequency f.

Bath: 1-2 mM Ca?, Ach 0-2 uM

 We tested A in a range that produces
physiological hyperpolarization (0.1-0.5 nA).
«  We tested f=8 Hz, a mid frequency in the

ﬁh- a range, to reduce parameter space.

.: I- Romani et al., 2024 »



In summary...

 ACh affects all the neurons and

synapses. It has a concentration ACh.

» We tested concentrations of 0-2 uM,
which are biological plausible

« Simulations are run at in vitro (2 mM)
and in vivo (1 mM) calcium

concentration.
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® o MS ON
«  Given the complexity of the simulations, we _ oo iy LT i
simulated only a portion of the entire circuit. : o —ue | T
When MS pacemaker cells are activated, we Tmliis)
can record a strong theta oscillations in CA1 P Depolarsstion 2% ACh1 M
«  We scanned a 4D space of parameters. s g“o
« Let’s focus on in vivo calcium simulations. 2 g;;l‘;ﬁi
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When MS pacemaker cells oscillate at
8 Hz, we observe an 8 Hz oscillation in
CA1.

* In the image, we can see the power
spectrum at different depolarization
levels with and without pacemaker

cells.
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What is the role of background excitation, ACh, and low calcium?

« Both background excitation and ACh depolarize the cells. Both ACh and low calcium
decrease synaptic release probability.

« We can speculate that background excitation and ACh cooperate to bring the cells to a
sufficient activity, and both ACh and low calcium cooperate to uncouple the cells.

« The latter seems important to create an asynchronous activity necessary to be
entrained by the pacemaker cells.

* Interestingly, in high calcium, background excitation and ACh bring the cells to an high

activity that cannot be easily entrained by the pacemaker cells

=PrL .



Summary 1.2

« The network model is used to integrate available data.

 We combined the biophysical model with other models more
phenomenological (disinhibition, ACh, excitation).

* The network was not “tuned” to obtain the result.

« The model supports the role of the MS pacemaker cells to generate theta

and provides additional predictions.
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« Sustainable development is development that meets the needs of the present without
compromising the ability of future generations to meet their own needs. [...] a concern
for social equity between generations, a concern that must logically be extended to

equity within each generation. »

Our common future, Bruntland report, United Nations, 1987

«possibility that humans and other life will flourish on the Earth forever»

John Ehrenfeld, 2008
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* Fishing more than necessary

« Fishing with a rate (consumption
rate) that is higher than the

reproduction (replacement rate)
* Risk of species extinction

* New generations will not have

enough fishes

=PrL

wwf.panda.org
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Weak vs. strong sustainability

» Sustainability is based on 3 pillars:
social (or equity), economic,
environment

Society

* In weak sustainability we have to

Environment

Sustainability

compromise between them
Sustainable

* In strong sustainability we have a

hierarchy where environment is higher '
in the hierarchy

Social
Environmental

Economic

wikipedia
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Drive furtr]:er Direct rebound effect: more
or more often of the same consumption
Money saved \
Indirect rebound effect: other
Holiday in @ impactful consumption
Japan i]

‘.Ef .' @ @

efficient car Energy

Reinforcement of a car- s
based transport system at ﬁi@
the expense of greener r Q\
alternative, such as public

transport and cycling

E P F L Sorrell et al, 2018 .

Secondary effect: reinforce
current socio technical

system at the expense of
greener alternative




Sustainability at EPFL
0 A

.

Sustainability g

Sustainability is one of our strategic focus areas, and

we're committed to incorporating it into our operations -
across all our campuses - as we pursue our missions of
education, research and innovation.
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Animals Energy Chemicals
Resources Waste
Pollution T

Biodiversity
Workers’ Health

Capture from the Wild
Allergy Infections

_ Genetically Modified Animals
Waste Anesthetic Gases
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Minimise wet-1ab experiments

In addition to the previous points, we can consider other reasons to do so:

* Ethical reasons

* Animals as models to study human brains. Are they really good models?
« We cannot measure everything. Use model-based predictions

« We could design drugs and reduce testing phases

Computer models can help to reduce wet-lab experiments and use of animals.
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We can estimate the complexity of a simulation by estimating the number of ODEs to be solved.

We can assume that each compartment has roughly 3 channels, and each one solves 1-2 ODE. So, let’s say, we solve

roughly 5 ODEs per compartment.
Total num ODEs = (ODEs for channels) + (ODEs for voltage) + (ODEs for synapses)
ODEs for channels = (N neurons) * (avg num compartments per neuron) * (ballpark num ODEs per channel)

ODEs for voltage = (N neurons) * (avg num compartments per neuron)

ODEs for synapses = (N neurons) * (avg num synapses per neuron) * (ODEs per synapse) = (total number of

synapses) * (ODEs per synapse)

=PrL .



For a network of 800k neurons (older version of the rat CA1 model, Romani et al.):

ODEs for channels =

ODEs for channels =

ODEs for voltage =

800000 * 1000 *5=4*10°

(N neurons) * (avg hum compartments per neuron)

ODEs for voltage = 800000 * 1000 = 8 * 108

ODEs for synapses =

per synapse)

ODEs for voltage =

Total num ODEs =

(0.6*10%) *4=2.4"* 10°

(N neurons) * (avg hum compartments per neuron) *

(ballpark num ODEs per channel)

(N neurons) * (avg num synapses per neuron) * (ODEs per synapse) = (total number of synapses) *

(ODEs for channels) + (ODEs for voltage) + (ODEs for synapses)

ﬁ?uLODES 4*10°+0.8*10°+24* 10°=7.2" 10°

(ODEs
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The BBP uses a supercomputer roughly capable of 2 x 10° TFLOPS, with 400 TB of
memory and 200 TB/s of memory bandwidth. The energy use for 720 processors
involved in this simulation is around 400 kW. A simulation of 10 million neurons [i.e., the
entire neocortex] in a cortical circuit requires approximately 1,460 TFLOPS and 270 kW
fo simulate 1 s of biological time and took more than 8 h of processing time [...]. If we
convert power (W or J/s) to energy (J) units, 270 kW (for 8 h) is 7,776,000,000 J of

energy to compute 1 s of mouse cortical activity.

When extrapolating to the entire mouse brain with 108 neurons, a simulation would
require 2.7 MW. Extrapolating again to a human brain with 10° times as many neurons as

a mouse brain, the power requirement would be 2.7 GW.

E P :: L Stiefel and Coggan, 2023
42
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FIGURE 1

Energy use by the brain of a mouse, a human, a typical laptop processor, a leading supercomputer (Frontier), and the scaled energy uses (with and

human brain

mouse brain

laptop

Energy use/production

8 million human brains,
scaled simulation & time
corrected

human brain simulation,
scaled & time corrected

mouse brain simulation,

scaled & time corrected US power output

human brain simulation,
scaled

largest supercomputer

mouse brain simulation,
mouse cortex section

scaled

without corrections for processing time) for a complete mouse brain, a complete human brain and 8 million human brains

Stiefel and Coggan, 2023
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Mission: Providing world-class computational Vision: Deliver transforming discoveries in

resources and specialized services for the most energy technologies, materials, biology,
computationally intensive global challenges environment, health, etc.

1018
Steady progress of 10x per generation

1017

1016

W
ENRG v aNnen

ot i e

Frontier
s - 2,000 PF
ik Hybrid GPU/CPU

Titan: 200 PF 29 MW

Jaguar 27 PF Hybrid GPU/CPU

23 PF Hybrid GPU/CPU 13 MW
Multi-core CPU ? MW
2009 7 MW 2012 2017 2021

E P F L Oak Ridge Leadership Computing Facility (OLCF)



1 MegaWatt (MW) power could cost ~

1 million dollar per year

[ P F L Oak Ridge Leadership Computing Facility (OLCF)

Frontier first US Exascale computer
Multiple GPU per CPU drove energy efficiency

Jaguar 3,043 MW/EF

ORNL GPU/CPU

Jaguar none
Titan 1
Summit 3
Frontier 4

Exascale made possible
by 200x improvement
in energy efficient

Titan computing
330 MW/EF ; :
Summit Frontier
B esvwER 15 mwer
2009 2012 2017 2021
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‘ 1 TECHNOLOGY REPORT
- frontlers . published: 19 September 2019
m NGUTOIHformatICS doi: 10.3389/fninf.2019.00063

Check for
updates

CoreNEURON : An Optimized
Compute Engine for the NEURON
Simulator

Pramod Kumbhar', Michael Hines?, Jeremy Fouriaux’, Aleksandr Ovcharenko’,
James King', Fabien Delalondre and Felix Schiirmann™

" Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2 Department of Neuroscience,
Yale University, New Haven, CT, United States

- 4—-7x less memory usage and 2—7x less execution time
=PrL
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« Design a simulation campaign that minimizes the core-hours. Example, the cylinder is
a good proxy of the full model. We extensively scan parameters with cylinder, and

then run few test simulations with the full-scale model.

« Scan parameters to reduce the number of animals. From models back to

experiments.

* Reuse existing results. Reuse the models, experimental data... Identify the gaps and

ask the community to do only certain experiments.

« Better model but bigger environmental impact. Adding granularity or not?

47



More efficient simulators
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» More simulations

Sustainability

—» decrease
—— increase
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—» decrease

—— increase

Reduce wet-lab experiments > Computer simulations

New experiments to constrain
and validate the models

Sustainability
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Summary 2

« Computer models are complementary to animal experiments, and in some

cases a valid alternative
« Also computer models have a significant impact on the environment

« Improving computer and software efficiency reduce this impact, but we have

rebound effects

« ltis clear that there are complex relationships between science, society,

economics, and environment

« Firstimportant thing is to be aware of the problem and implications, and try

to do our best to be more sustainable.
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What you have learnt

« Example of a more sophisticated simulation experiment
« Sustainability. Definitions. Different types.
« Impact of computer simulations, wet-lab experiments

 Rebound effect
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